Physics 129: Problem Set #9 Because the GREs are next weekend, this HW is due Monday Nov 12 at 5PM

Homework Box available on 2^{nd} Floor LeConte breezeway REMEMBER: Midterm # 2 is on Wed Nov 14.

- 1. The B^- meson decays when the b quark in that meson emits a W^- . The W^- can then turn into any of the lepton families or into the first two quark families.
 - (a) Draw Feynman diagrams for these decays. In each case, explain what CKM matrix element belongs at each vertex.
 - (b) Estimate the branching ratio for $B^- \to X e^- \overline{\nu_e}$ (Don't forget to include a color factor for the quarks the same way you do when calculating R in e^+e^- annihilation)
 - (c) Using the B^- lifetime from the Particle Data Book and the diagrams you drew in part (a), estimate the value of CKM matrix element V_{tb} . Note: to do this problem, you must use the fact that the CKM matrix is unitary. You may assume that the formula for muon decay can be used for the B^- decays if you replace the μ mass with the B mass and include the appropriate CKM factors (as in Perkins 7.43).
- 2. Consider the leptonic decay $B^+ \to \ell^+ \nu_\ell$. This is a very rare decay that has not yet been observed.
 - (a) Explain in words why this decay is so rare.
 - (b) Using the information on page 212 of Perkins, calculate the relative rates for the B^+ to decay to the 3 lepton species e, μ and τ .
 - (c) If you make the assumption that the matrix element for this decay is identical to that for $K^+ \to \mu \nu_{\mu}$ aside from the factors described on page 212, what would you predict for the partial width $\Gamma(B \to \mu \nu_{\mu})$? (Use the Particle Data Book to get the relevant information for the K^+ .)

- (d) Using the results from part (c) and the total B^+ decay width from the Particle Data Book, calculate the branching ratio for $B^+ \to \tau^+ \nu_{\tau}$
- (e) The PEP-II e^+e^- collider at SLAC has reached its design luminosity of $3 \times 10^{33}~{\rm cm}^{-2}{\rm sec}^{-1}$. The cross section for the process $e^+e^- \to B\overline{B}$ at this energy is about 1 nbarn. How many years will PEP-II need to run before 10 events in the channel $B^+ \to \tau^+ \nu$ are produced? Assume that the accelerator runs for 10^7 sec per year.
- 3. Perkins 7.2 This problem will tell you alot about how a neutrino beam is made at an accelerator laboratory.